Book Chapter
Kadosh D. Morphogenesis in C. albicans. In: Kadosh D. Candida albicans: Cellular and Molecular Biology II. 2017.
Journal Article
Romo JA
Zhang H
Cai H
Kadosh D
Koehler JR
Saville SP
Wang Y
Lopez-Ribot JL. Global transcriptomic analysis of the Candida albicans response to treatment with a novel inhibitor of filamentation mSphere 2019 Jan;4(5). Banerjee M
Lazzell AL
Romo JA
Lopez-Ribot, JL
Kadosh D. Filamentation is associated with reduced pathogenicity in multiple non-albicans Candida species mSphere 2019 Jan;4(5). Vipulanandan, G., Herrera, M., Wiederhold, N.P., Li, X., Mintz, J., Wickes, B.L., and D. Kadosh. Dynamics of mixed-Candida species biofilms in response to antifungals J. Dent. Res 2018 Jan;97(1):91-98. Kadosh, D
Najvar, LK
Bocanegra, R
Olivo, M
Kirkpatrick, WR
Wiederhold, N
Patterson, T. Effect of antifungal treatment in a diet-based murine model of disseminated candidiasis acquired via the gastrointestinal tract Antimicrob Agents Chemother 2016 Jan;60:6703-6708. Vautier S, Drummond RA, Chen K, Murray GI, Kadosh D, Brown AJ, Gow NA, MacCallum DM, Kolls JK, Brown GD. Candida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity Cell Microbiol 2015 Apr;17(4):445-450. Kadosh D. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans PLoS ONE 2015 Mar;10(3). Albataineh M, Lazzell A, Lopez-Ribot J, Kadosh D. Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans Eukaryot Cell 2014 Dec;13(12):1538-1547. Childers, D.S, Mundodi, V., Banerjee, M., Kadosh D. A 5? UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition Mol Microbiol 2014 May;92(3):570-585. Lackey E, Vipulanandan G, Childers DS, Kadosh D. Comparative evolution of morphological regulatory functions in Candida species Eukaryot Cell 2013 Oct;12(10):1356-1368. Carlisle PL, Kadosh D. A genome-wide analysis of morphology determination in Candida albicans Mol Biol Cell 2013 Feb;24(3):246-260. Banerjee M, Uppuluri, P, Xhao XR, Carlisle PL, Vipulanandan G, Villar CC, Lopez-Ribot, JL, Kadosh D. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms Eukaryot Cell 2013 Feb;12(2):224-232. Carlisle, PL, Kadosh D. Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein Eukaryot Cell 2010 Sep;9(9):1320-1328. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL. Dispersion as an important step in the Candida albicans biofilm developmental cycle PLoS Pathog 2010 Mar;6(3). Carlisle PL, Banerjee M, Lazzell A, Monteagudo C, Lopez-Ribot JL, Kadosh D. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence Proc Natl Acad Sci U S A 2009 Jan;106(2):599-604. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, Lopez-Ribot JL, Kadosh D. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence Mol Biol Cell 2008 Apr;19(4):1354-1365. Kadosh D, Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis Mol Biol Cell 2005 Jun;16(6):2903-2912. Braun BR*, Kadosh D*, Johnson AD (*These two authors made equal contributions). NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction EMBO J 2001 Sep;20(17):4753-4761. Kadosh D, Johnson AD. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans Mol Cell Biol 2001 Apr;21(7):2496-2505. Banerjee M
Lazzell AL
Romo JA
Lopez-Ribot JL
Kadosh D. Filamentation is associated with reduced pathogenicity of multiple non-albicans Candida species mSphere 2001 Feb;4(5). Kadosh D, Struhl K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo Mol Cell Biol 1998 Sep;18(9):5121-5127. Kadosh D, Struhl K. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo Genes Dev 1998 Mar;12(6):797-805. Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters Cell 1997 May;89(3):365-371. De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast Nature 1996 Dec;384(6609):589-591.
Review Article
Kadosh D. Regulatory Mechanisms Controlling Morphology and Pathogenesis in Candida albicans Curr Opin Microbiol 2019 Jan;52:27-34. Kadosh D. Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms Cell Mol Life Sci 2016 Jun;73(22):4265-4278. Albataineh M
Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi Med Mycol 2016 May;54(4):333-352. Kadosh D. Shaping up for battle: morphological control mechanisms in human fungal pathogens PLoS Pathog 2013 Dec;9(12):100379-100379. Kadosh D, Lopez-Ribot, JL. Candida albicans: adapting to succeed Cell Host Microbe 2013 Nov;14(5):483-485. Thompson DS, Carlisle PL, Kadosh D. Coevolution of morphology and virulence in Candida species Eukaryot Cell 2011 Sep;10(9):1173-1182. Struhl K, Kadosh D, Keaveney M, Kuras L, Moqtaderi Z. Activation and repression mechanisms in yeast Cold Spring Harbor Symp Quant Biol 1998 Jan;63:413-421.